

ГОСУДАРСТВЕННАЯ СИСТЕМА ОБЕСПЕЧЕНИЯ ЕДИНСТВА ИЗМЕРЕНИЙ

Хроматографы газовые промышленные «Хромос ПГХ-1000.1»

МЕТОДИКА ПОВЕРКИ МП 1600-1314-2024

ОГЛАВЛЕНИЕ	
1 ОБЩИЕ ПОЛОЖЕНИЯ	3
2 ПЕРЕЧЕНЬ ОПЕРАЦИЙ ПОВЕРКИ СРЕДСТВА ИЗМЕРЕНИЙ	3
3 ТРЕБОВАНИЯ К УСЛОВИЯМ ПРОВЕДЕНИЯ ПОВЕРКИ	4
4 ТРЕБОВАНИЯ К СПЕЦИАЛИСТАМ, ОСУЩЕСТВЛЯЮЩИМ ПОВЕРКУ	5
5 МЕТРОЛОГИЧЕСКИЕ И ТЕХНИЧЕСКИЕ ТРЕБОВАНИЯ К СРЕДСТВАМ ПОВ	ЕРКИ 5
6 ТРЕБОВАНИЯ ПО ОБЕСПЕЧЕНИЮ БЕЗОПАСНОСТИ ПРОВЕДЕНИЯ ПОВЕР	ΥИ 8
7 ВНЕШНИЙ ОСМОТР	8
8 ПОДГОТОВКА К ПОВЕРКЕ И ОПРОБОВАНИЕ СРЕДСТВА ИЗМЕРЕНИЙ	9
9 ПРОВЕРКА ПРОГРАММНОГО ОБЕСПЕЧЕНИЯ СРЕДСТВА ИЗМЕРЕНИЙ	9
10 ОПРЕДЕЛЕНИЕ МЕТРОЛОГИЧЕСКИХ ХАРАКТЕРИСТИК И ПОДТВЕРЖДЕ	ние
СООТВЕТСТВИЯ СРЕДСТВА ИЗМЕРЕНИЙ МЕТРОЛОГИЧЕСКИМ ТРЕБОВАН	ИЯМ10
11 ОФОРМЛЕНИЕ РЕЗУЛЬТАТОВ ПОВЕРКИ	17
А ИНСТРУКЦИЯ ПО ПРИГОТОВЛЕНИЮ КОНТРОЛЬНЫХ РАСТВОРОВ	18

1 Общие положения

Настоящая методика распространяется на хроматографы газовые промышленные «Хромос ПГХ-1000.1» (далее – хроматографы).

Хроматографы предназначены для измерения содержания компонентов, входящих в состав анализируемых проб веществ и материалов.

Требования по обеспечению прослеживаемости поверяемых хроматографов к государственным первичным эталонам единиц величин выполняются путем реализации методик измерений с применением стандартных образцов утвержденного типа и средств измерений, применяемых в качестве эталона, прослеживаемых к государственным первичным эталонам:

ГЭТ154-2019 «ГПЭ единиц молярной доли, массовой доли и массовой концентрации компонентов в газовых и газоконденсатных средах» в соответствии с приказом Федерального агентства по техническому регулированию и метрологии от 31 декабря 2020 г. № 2315 «Об утверждении Государственной поверочной схемы для средств измерений содержания компонентов в газовых и газоконденсатных средах»;

ГЭТ208-2024 «ГПЭ единиц массовой (молярной) доли и массовой (молярной) концентрации органических компонентов в жидких и твердых веществах и материалах на основе жидкостной и газовой хромато-масс-спектрометрии с изотопным разбавлением и гравиметрии» в соответствии с приказом Федерального агентства по техническому регулированию и метрологии от 10.06.2021 г. № 988 «Об утверждении Государственной поверочной схемы для средств измерений содержания органических и элементорганических компонентов в жидких и твердых веществах и материалах»;

ГЭТ3-2020 «ГПЭ единицы массы – килограмма» в соответствии с приказом Федерального агентства по техническому регулированию и метрологии от 04.07.2022 г. № 1622 «Об утверждении Государственной поверочной схемы для средств измерений массы».

Метод, обеспечивающий реализацию методики поверки – метод косвенных измерений.

2 Перечень операций поверки средства измерений

При проведении поверки должны быть выполнены операции, указанные в таблице1.

На основании письменного заявления владельца средств измерений или лица, предоставившего их на поверку, оформленного в произвольной форме, допускается проводить периодическую поверку отдельных измерительных каналов (с меньшим количеством детекторов, чем указано в комплектности хроматографа).

Таблица 1 – Операции поверки

Гионици г операции поверки	Номер пункта	Обязательн	ость проведени	я операции при
Наименование операции	методики поверки	первичной поверке		периодической поверке
1. Внешний осмотр	7	Да	Да	Да
2. Подготовка к поверке и опробование средства измерений	8			
2.1 Опробование	8.2			
2.1.1 Проверка прочности электрической изоляции	8.2.1	Да	Да ³⁾	Нет
2.1.2 Проверка сопротивления электрической изоляции	8.2.2	Да	Да ³⁾	Нет

продолжение таолицы т	T	T		
	Номер пункта	Обязательность проведения операции при		
Наименование операции методики поверки		первичной поверке	при выпуске из ремонта	периодическо й поверке
2.1.3 Проверка качества заземления	8.2.3	Да	Да ³⁾	Да ³⁾
3. Проверка программного обеспечения средства измерений	9	Да	Да	Да
4. Определение метрологических характеристик и подтверждение соответствия средства измерений метрологическим требованиям	10			
4.1 Определение уровня флуктуационных шумов и дрейфа нулевого сигнала	10.1	Да	Да ³⁾	Да ¹⁾
4.2 Определение предела детектирования	10.2	Да	Да	Да ¹⁾
4.3 Определение относительного среднего квадратического отклонения выходного сигнала	10.3	Да	Да	Да ¹⁾
4.4 Определение изменения выходного сигнала за 48ч непрерывной работы хроматографа	10.4	Нет	Да	Да ¹⁾
4.5 Определение показателей точности результатов измерений, установленных в НД на методику измерений	10.5	Нет	Нет	Да ²⁾
4.6. Подтверждение соответствия средства измерений метрологическим требованиям	10.6	Да	Да	Да
5. Оформление результатов поверки	11	Да	Да	Да

Примечания:

3 Требования к условиям проведения поверки

При проведении поверки должны быть соблюдены следующие условия:

- температура окружающей среды (20 \pm 5) $^{\circ}$ С;

- относительная влажность от 30 % до 80 %;

– атмосферное давление
 от 84 до 106 кПа (от 630 до 800 мм рт. ст.),

изменяющееся в процессе поверки не более чем на ± 5 кПа ($\pm 3,75$ мм рт. ст.);

— напряжение переменного тока (230 \pm 23) В; — частота переменного тока (50 \pm 0,4) Гц;

 $^{^{1)}}$ при отсутствии НД на методику измерений, аттестованную в установленном порядке по ГОСТ Р 8.563-2009 Государственная система обеспечения единства измерений (ГСИ). Методики (методы) измерений;

²⁾ при наличии НД на методику измерений, аттестованную в установленном порядке;

³⁾ если производился ремонт электрических цепей.

– механические воздействия, внешние электрические и магнитные поля, влияющие на работу хроматографа, должны отсутствовать.

4 Требования к специалистам, осуществляющим поверку

K проведению поверки допускаются поверители из числа сотрудников организаций, аккредитованных на право проведения поверки в соответствии с действующим законодательством $P\Phi$, изучивших настоящую методику поверки, руководство по эксплуатации на прибор и имеющих стаж работы по данному виду измерений не менее 1 года.

5 Метрологические и технические требования к средствам поверки

При проведении поверки применяют средства поверки (эталоны единиц величин, стандартные образцы, средства измерений, вспомогательное оборудование, реактивы и материалы), указанные в таблице 2.

Таблица 2 – Средства поверки

Операции поверки, требующие применение средств поверки	Метрологические и технические требования к средствам поверки, необходимые для проведения поверки	Перечень рекомендуемых средств поверки
Контроль условий проведения поверки (п. 3)	Средства измерений температуры окружающего воздуха Диапазон измерений температуры от 0 до + 50 °C, пределы допускаемой абсолютной погрешности измерений ±0,5 °C Средства измерений относительной влажности окружающего воздуха. Диапазон измерений относительной влажности от 10 % до 95 %, пределы допускаемой погрешности измерений ±3 %. Средства измерений атмосферного давления. Диапазон измерений давления от 80 до 106 кПа, пределы допускаемой абсолютной погрешности измерений ±0,5 кПа	Прибор комбинированный Testo 622, рег. № в ФИФ 53505-13
Проверка прочности электрической изоляции (п. 8.2.1)	Диапазон задания выходного напряжения от 0 до 10 кВ, пределы допускаемой относительной погрешности задания выходного напряжения ±4 %	Установка высоковольтная испытательная пробойная ПрофКиП УПУ-10, рег. № в ФИФ 78504-20
Проверка сопротивления электрической изоляции (п. 8.2.2)	Диапазон измерений сопротивления от 0 до 10^9 Ом, $KT-1$.	Мегаомметр М4100/4, рег. № в ФИФ 3424-73
Проверка качества заземления (п. 8.2.3)	Пределы измерений переменного напряжения $(0-1000)$ В, погрешность $\pm (0,0004\text{X}+40\ \text{ед.}\ \text{мл.}\ \text{разр.})$, предел измерения переменного тока $(0-10)$ А, погрешность $\pm (0,001\text{X}+40\ \text{ед.}\ \text{мл.}\ \text{разр.})$	Мультиметр цифровой APPA505, рег.№ в ФИФ 49266-12

Продолжение таблицы 2					
Операции поверки, требующие применение средств поверки	Метрологические и технические требования к средствам поверки, необходимые для проведения поверки	Перечень рекомендуемых средств поверки			
поверки	Рабочие эталоны единиц содержания компонентов в газовых смесях 2-го разряда и выше по ГПС в соответствии с приказом Росстандарта от 31 декабря 2020 г. № 2315. Пределы допускаемой относительной погрешности ±(2–5) % Объемная доля пропана от 0,1 до 0,5 % Объемная доля пропана от 0,1 до 0,5 % Объемная доля водорода от 0,6 до 1,0 % Массовая концентрация сероводорода от 4 до 100 мг/м³ (молярная доля сероводорода от 4 до 100 мг/м³ (молярная доля сероводорода от	СО состава газовой смеси пропан в гелии, ГСО 10655-2015 СО состава газовой смеси пропан – азот, ГСО 10651-2015 СО состава газовой смеси азот – гелий, ГСО 10532-2014 СО состава газовой смеси: водород – азот, ГСО 10532-2014 СО состава сероводород – азот, ГСО 10538-2014			
Определение	2,8·10 ⁻⁴ % до 7,0·10 ⁻³ %) Массовая концентрация сероводорода от 4 до 50 мг/м³ (молярная доля сероводорода от 2,8·10 ⁻⁴ до 3,5·10 ⁻³ %) Массовая концентрация этилмеркаптана от 4 до 50 мг/м³ (молярная доля сероводорода от 1,55 10 ⁻⁴ го 1,0·10 ⁻³ %)	СО состава сероводород – метан, ГСО 10538-2014 СО состава этилмеркаптан – азот, ГСО 10537-2014			
метрологических характеристик средства измерений	1,55·10 ⁻⁴ до 1,9·10 ⁻³ %) массовая доля кислорода от 0,01 % до 0,02 % (молярная доля кислорода от 0,01 до 0,03 %)	СО состава кислород – аргон, ГСО 10611-2015			
(п. 10)	Массовая концентрация трихлорэтилена от 0,1 до 34 мг/м ³ (молярная доля трихлорэтилена от 5,1.10 ⁻⁶ до 5,1.10 ⁻¹ %)	СО состава газовой смеси трихлорэтилен в азоте, ГСО 10550-2014			
	Объемная доля водорода от 0,0001 % до 0,005 %	СО состава водород в гелии, ГСО 10532-2014			
	Объемная доля кислорода от 0,0001 % до 0,005 %	СО состава кислород в гелии, ГСО 10532-2014			
	Объемная доля азота от 0,0001 % до 0,005 %	СО состава азот в гелии, ГСО 10532- 2014			
	Объемная доля метана от 0,0001 до 0,005 %	CO состава метан в гелии, ГСО 10532-2014			
	Объемная доля монооксида углерода от 0,0001 % до 0,005 %	СО состава монооксид углерода в гелии, ГСО 10532-2014			
	Рабочие эталоны единиц содержания органических и элементорганических компонентов в жидких и твердых веществах и материалах по ГПС в соответствии с приказом Росстандарта от 10.06.2021 г. № 988				
	Массовая доля бензола от 99,90 % до 99,98 %, допускаемое значение расширенной неопределенности аттестованного значения 0,8·(100 - w)	Стандартный образец состава бензола (Бзл-ВНИИМ-ЭС), ГСО 11988-2022			

продолжение таол	ИЦЫ 2			
Операции поверки, требующие применение средств поверки	Метрологические и технические требования к средствам поверки, необходимые для проведения поверки	Перечень рекомендуемых средств поверки		
	Массовая концентрация гептана в нонане от 0.90 до 1.10 мг/см ³ , границы допускаемых значений абсолютной погрешности ± 0.05 .	Стандартный образец массовой концентрации Гептана в нонане (СО ГН - XPOMATЭК), ГСО 10956-2017		
	Массовая доля н-гептана от 99,00 % до 99,90 %, допускаемое значение расширенной неопределенности аттестованного значения 0,02	Стандартный образец состава н- гептана (Гп-ВНИИМ-ЭС), ГСО 12062-2022		
	Диапазон измерений массы от 0 до 230 г; погрешность \pm (0,00002-0,00024) г	Весы лабораторные электронные МЕ 235 S, рег. № в ФИФ 21464-07		
	Диапазон температур от -50 °C до $+300$ °C, абс. погрешность $\pm 0{,}05$ °C.	Термометр лабораторный электронный ЛТ-300, рег. № в ФИФ 61806-15		
	Колбы мерные вместимостью 10, 25, 100, 250, 500 см ³ , ГОСТ 1770-74, класс точности 2			
	Пипетки вместимостью 1 см ³ , ГОСТ 29227-91,	класс точности 2		
	Аргон газообразный высшего сорта, ГОСТ 10157-2016, объемная доля основного вещества 99,993%			
	Гелий газообразный, марка А, ТУ0271-135-31323949-2005, объемная доля основного вещества 99,995%			
	Азот повышенной чистоты, объемная доля основного вещества не менее 99,95%, ГОСТ 9293-74			
	Водород технический, марка А, объемная доля основного вещества не менее 99,99%, ГОСТ 3022-80			
	Воздух технический ГОСТ 17433-80 Класс заг	рязненности 1		
	Воздух нулевой марка Б по ТУ 6.21-5-82			
	Гептан эталонный, массовая доля основного ве			
	Колонка стальная, длина 1 м, сорбент: хроматон N-AW-HMDS или N-AW-DMCS (зернение (0,16 – 0,20) мм), пропитанный 5% силикона SE-30 или аналог			
	Колонка стальная, длина 1м, сорбент: окись алюминия активная, фракция (0,2 – 0,35) мм или аналог			
	Колонка капиллярная длиной (5 – 100) м, диаметром (0,25 – 0,53) мм, типа DB-1, HP-5, VB-5 или аналог			
	Колонка капиллярная длиной 50 м, диаметром 0,32 мм типа HP-FFAP или аналог			
	Колонка стальная, длина $(1-4)$ м, сорбент: молекулярные сита NaX или CaA, фракция $(0,2-0,35)$ мм или аналог			
Колонка стальная, длина $(1-4)$ м, сорбент: полимерный абсорбент типа Порапак, фракция $(0,15-0,35)$ мм или аналог				
Примечание – Допус	кается использование других средств поверки, о	беспечивающих определение		

Применяемые при поверке средства измерений должны быть поверены, стандартные образцы, материалы и реактивы должны иметь действующие паспорта. Допускается использовать другие средства измерений, метрологические и технические характеристики которых соответствуют указанным в методике поверки.

метрологических характеристик хроматографа с требуемой точностью

При наличии нормативной документации на МИ по ГОСТ Р 8.563-2009 технические характеристики колонок должны соответствовать требованиям раздела о средствах измерений методики измерений.

Жидкие контрольные смеси для поверки изготавливаются объемно-весовым методом на основе указанных ГСО по прилагаемой инструкции (см. приложение А настоящей МП).

6 Требования по обеспечению безопасности проведения поверки

- 6.1 Работы с хроматографом должны проводиться в соответствии с требованиями эксплуатационной документации и следующих документов:
- ГОСТ 30852.16-2002. Электрооборудование взрывозащищенное. Часть 17. Проверка и техническое обслуживание электроустановок во взрывоопасных зонах (кроме подземных выработок);
- ПБ 09-540-2003. Общие правила взрывобезопасности для взрывоопасных химических и нефтехимических производств;
 - ОНТП 51-1-85. Магистральные трубопроводы.
- 6.2 Все работы, относящиеся к поверке хроматографа, должны быть выполнены с соблюдением требований безопасности, приведенных в руководстве по эксплуатации, а также в приказе Минтруда России № 903н от 15.12.2020 г. «Об утверждении правил по охране труда при эксплуатации электроустановок».

При поверке должны быть соблюдены требования безопасности и санитарно-гигиенические требования по ГОСТ 12.1.007-76 Система стандартов безопасности труда (ССБТ). Вредные вещества. Классификация и общие требования безопасности (с Изменениями № 1, 2).

- 6.3 Источниками опасности хроматографа являются:
- токоведущие части, находящиеся под напряжением;
- газовые магистрали высокого давления (0,4 МПа);
- внутренние поверхности термостатов хроматографа, имеющие высокую температуру.
- 6.4 Все составные части хроматографа, имеющие силовые цепи, должны быть заземлены.
- 6.5 При проведении анализов горючих, взрывоопасных, вредных и агрессивных веществ должны соблюдаться меры пожарной безопасности и правила техники безопасности, предусмотренные в специальных инструкциях, разрабатываемых потребителем в соответствии со спецификой применяемых веществ.

При эксплуатации хроматограф должен быть заземлен.

К поверке допускаются лица:

- имеющие квалификационную группу по технике безопасности не ниже III согласно «Правилам техники безопасности при эксплуатации электроустановок потребителей»;
 - изучившие руководство по эксплуатации и правила пользования средствами поверки.

Поверитель должен пройти инструктаж по технике безопасности и противопожарной безопасности, в том числе на рабочем месте.

7 Внешний осмотр

- 7.1 При внешнем осмотре устанавливают следующее:
- соответствие комплектности хроматографа данным эксплуатационной документации;
- исправность механизмов и крепежных деталей;
- четкость маркировки;
- соответствие заводского номера хроматографа, однозначно идентифицирующего экземпляр СИ;
- соответствие внешнего вида хроматографа описанию и изображению, приведенному в описании типа.
- 7.2. Результаты внешнего осмотра считают положительными, если СИ соответствует перечисленным требованиям.

8 Подготовка к поверке и опробование средства измерений

- 8.1 Перед проведением поверки должны быть выполнены следующие подготовительные работы:
 - включают приточно-вытяжную вентиляцию;
 - подготавливают хроматограф в соответствии с НД;
- подготавливают колонки в соответствии с нормативной документацией по проведению анализа;
- проводят проверку герметичности газовых линий согласно руководству по эксплуатации на хроматограф;
- средства поверки и поверяемые хроматографы подготавливают к работе в соответствии с требованиями их эксплуатационной документации;
- ГСО состава газовых смесей в баллонах выдерживают в помещении, в котором проводят поверку, в течение 24 часов;
 - пригодность ГСО должна быть подтверждена паспортами на них.

8.2 Опробование

Опробование осуществляют в соответствии с требованиями НД на хроматограф.

8.2.1 Проверка прочности электрической изоляции. Прочность изоляции силовых цепей проверяется на пробойной установке УПУ-10 напряжением 1500 В, частотой 50 Гц.

Напряжение прикладывается между соединенными вместе контактами сетевой вилки хроматографа и клеммой заземления.

На цепь, подвергаемую проверке, подать рабочее напряжение и увеличивать его плавно за время 5 – 10 секунд до величины 1500 В и выдержать в течение 1 минуты. Хроматограф считать выдержавшим проверку, если отсутствует пробой или поверхностный разряд.

8.2.2 Проверка сопротивления электрической изоляции.

Измерение сопротивления изоляции следует проводить мегаомметром M4100/4 при напряжении 500 B.

Сопротивление изоляции хроматографа измеряется между соединенными вместе контактами сетевой вилки и клеммой заземления. Сетевой тумблер на хроматографе поставить в положение «ВКЛ».

Величина сопротивления изоляции должна быть не менее 20 МОм во всем диапазоне температур окружающей среды.

- 8.2.3. Проверка качества заземления хроматографа производится измерением сопротивления между заземляющей клеммой и любой доступной прикосновению металлической нетоковедущей частью хроматографа, которая может оказаться под напряжением. Измеренное сопротивление должно быть не более 0,1 Ом.
- 8.3 Для поверки в качестве газа-носителя используются любые газы, указанные в таблице 2. Время выхода на рабочий режим для всех детекторов составляет 1,5 часа.

При наличии нормативной документации на методику измерений по ГОСТ 8.563-2009 подготовительные работы должны быть проведены в соответствии с требованиями раздела о подготовке к проведению измерений методики измерений.

9 Проверка программного обеспечения средства измерений

Для проверки идентификационного наименования и номера версии программного обеспечения необходимо выполнить следующую последовательность операций:

- включить персональный компьютер и дать время для загрузки операционной системы;
- после запуска ПО «Хромос» и отображения главного окна, нужно выбрать меню "Справка" "О программе";
 - в окне "О программе" отобразится требуемая информация.

Идентификационные данные программного обеспечения должны соответствовать таблице 3.

Таблица 3 – Идентификационные данные программного обеспечения

Идентификационные данные (признаки)	Значение
Идентификационное наименование программного обеспечения	CalcModule.dll
Номер версии (идентификационный номер) программного обеспечения	не ниже1.2
Цифровой идентификатор программного обеспечения (контрольная сумма исполняемого кода)	37C2B7AB
Алгоритм вычисления цифрового идентификатора программного кода	CRC-32

При опробовании проверяется правильность прохождения теста при включении прибора, идентификации программного обеспечения. Результаты опробования считаются положительными, если по окончании времени тестирования хроматографа, отсутствует сообщение о неисправности и появляются идентификационные данные программного обеспечения.

10 Определение метрологических характеристик и подтверждение соответствия средства измерений метрологическим требованиям

Условия проведения поверки хроматографа приведены в таблице 4.

Таблица 4 – Условия проведения поверки

Детектор	Наименование параметров режима	Значение параметра	Применяемая колонка
пид	Температура термостатов, °C: -колонок -дозатор - крана -детектора Расходы, см ³ /мин: -газ-носитель -водород -воздух - газ поддува	(100 ± 50) (180 ± 50) (80 ± 10) (180 ± 10) (20 ± 10) (25 ± 5) (250 ± 50) (25 ± 5)	Колонка стальная, длина 1 м, сорбент: хроматон N-AW-HMDS или N-AW-DMCS (зернение (0,16 – 0,20) мм), пропитанный 5 % силикона SE-30 или аналог. Колонка стальная, длина 1 м, сорбент: окись алюминия активная, фракция (0,2 – 0,35) мм или аналог. Колонка капиллярная длиной (5 – 100) м, диаметром (0,25 – 0,53) мм, типа DB-1, HP-5, VB-5 или аналогичная.
ПФД-S	Температура термостатов, °C: -колонок -кран -дозатор -детектора Расходы, см ³ /мин: -газ-носитель -водород -воздух	(50 ± 20) (80 ± 10) (80 ± 10) (140 ± 10) (20 ± 10) (110 ± 30) (80 ± 20)	Колонка капиллярная длиной $(5-100)$ м, диаметром $(0.25-0.53)$ мм, типа DB-1, HP-5, VB-5 или аналогичная.
дтп	Температура термостатов, °C: -колонок -дозатора	(100 ± 50) (150 ± 50)	Колонка стальная, длина 1 м, сорбент: окись алюминия активная, фракция $(0,2-0,35)$ мм или аналог

продолже	ние таблицы 4	Значение	
Детектор	Наименование параметров режима	параметра	Применяемая колонка
	-крана -детектора Расходы, см ³ /мин: -газ-носитель -сравнительный газ Напряжение моста, В	(100 ± 50) (150 ± 50) (20 ± 12) (20 ± 12) $(3 - 6)$	Колонка стальная, длина (1 – 4) м сорбент: молекулярные сита NaX или СаA, фракция (0,2 – 0,35) мм или аналог Колонка стальная, длина 1 м, сорбент хроматон N-AW-HMDS или N-AW-DMCS (зернение (0,16 – 0,20) мм), пропитанный 5 % силикона SE-30 или аналог
ТХД	Температура термостатов, °C: -колонок -крана-дозатора -детектора Расход, см ³ /мин: -газ-носитель -газ-поддува (водород в аргоне, (1 – 2) % об.) Ток моста, мА	(50 ± 50) (100 ± 50) (50 ± 10) (15 ± 5) (4 ± 2) (120 ± 10)	Колонка стальная, длина (1 – 4) м сорбент: молекулярные сита NaX или СаA, фракция (0,2 – 0,35) мм или аналог
ЭЗД	Температура термостатов, °C: -колонок -детектора Тип газа-носителя Расходы, см ³ /мин: -газ-носитель -газ поддува	(100 ± 50) (250 ± 50) (250 ± 10) (15 ± 10) (30 ± 15)	Колонка капиллярная длиной 50 м, диаметром 0,32 мм типа HP-FFAP или аналог
ЭХД	Температура термостатов, °C: -колонок -детектора Расходы, см3/мин: -газ-носитель -газ поддува (воздух)	(40 ± 10) (40 ± 10) (6 ± 4) (5 ± 2)	Любая колонка, позволяющая разделять серосодержащие соединения (например, Porapak-Q, GAS-PRO, колонки с фазами типа DB-1, DB-5 и т.д)
РИД	Температура термостатов, °C: -колонок -крана-дозатора -детектора Тип газа-носителя Расходы, см ³ /мин: -газ-носитель	(80 ± 30) (100 ± 40) (150 ± 50) гелий 5.5 гелий 6.0 Оптимальный для применяемой колонки (25 ± 10)	Колонка стальная, длина (1 – 4) м, сорбент: молекулярные сита NaX (СаА) или полимерный абсорбент (например Порапак, полисорб) фракция (0,15 – 0,35) мм. Капиллярная колонка с молекулярными ситами или полимерным абсорбентом длиной от 10 до 60 м, диаметром от 0,25 до 0,53 мм (например, HP-Molesieve. HP-PLOT Q и т.д.)

- 10.1 Определение уровня флуктуационных шумов и дрейфа нулевого сигнала
- 10.1.1 Для определения уровня флуктуационных шумов и дрейфа нулевого сигнала после выхода прибора на режим записывают и сохраняют хроматограмму длительностью 1 час.

Для измерения уровня шумов и дрейфа на полученной хроматограмме выделяют участок хроматограммы не менее 10 минут, который не содержит одиночных выбросов длительностью более 1 с. Выделенный участок хроматограммы сохраняется в виде самостоятельной хроматограммы.

Значение уровня флуктуационных шумов нулевого сигнала $\Delta' x$ для детекторов ПИД, ЭЗД, ПФД-S в амперах (A) определяют ПО «Хромос» по формуле (1)

$$\Delta' x = \Delta x \cdot K_{np}$$
 (1)

где Δx — максимальное значение амплитуды повторяющихся колебаний нулевого сигнала, мВ, с полупериодом (длительностью импульса), не превышающим 10 с, рассчитанное ПО «Хромос»;

 K_{np} – коэффициент преобразования усилителя выходного сигнала для детекторов:

$$\begin{array}{lll} \Pi \hbox{ ИД, } \Pi \hbox{ ФД-S, } \Im \hbox{Д} & \hbox{$K_{\pi p}$} = 10^{\text{-}13} \, \text{A/MB;} \\ \mbox{ДТП} & \hbox{$K_{\pi p}$} = 10^{\text{-}5} \, \text{B/MB;} \\ \mbox{ТХД, } \hbox{РИД} & \hbox{$K_{\pi p}$} = 10^{\text{-}6} \, \text{B/MB;} \\ \mbox{ЭХД} & \hbox{$K_{\pi p}$} = 10^{\text{-}6} \, \text{B/MB} \\ \end{array}$$

Значение уровня флуктуационных шумов нулевого сигнала $\Delta' x$ для детекторов ДТП, ТХД, ЭХД, РИД в вольтах (В) рассчитывается ПО «Хромос» в разделе «Поверка».

10.1.2. Для измерения дрейфа нулевого сигнала сохраненную хроматограмму дрейфа обрабатывают в разделе «Поверка» ПО «Хромос».

Значение дрейфа нулевого сигнала $\Delta' y$ детекторов ПИД, ЭЗД, ПФД-S, ГСД в амперах в час (А/ч) определяется по формуле (2)

$$\Delta' y = \Delta y \cdot K_{\text{mp}}$$
 (2)

где Δy - смещение уровня нулевого сигнала детектора, мВ/ч, зарегистрированное ПО «Хромос»; Значение дрейфа нулевого сигнала детекторов ДТП, ТХД, ЭХД, РИД определяется как смещение уровня нулевого сигнала детектора, зарегистрированное ПО «Хромос», В/ч.

При определении флуктуационных шумов и дрейфа нулевого сигнала с помощью ПО «Хромос» в разделе «Поверка» указанные выше расчеты проводятся автоматически.

10.2 Определение предела детектирования

Для определения предела детектирования вводят в хроматограф, соответствующий проверяемому детектору, контрольный образец (таблица 5).

Раствор объемом от 0,0001 до 0,002 см 3 вводят с помощью крана-дозатора жидкости, газовую смесь от 0,1 до 2 см 3 – газовым краном-дозатором.

Режимы поверки и газ-носитель – в соответствии с таблицей 4.

Таблица 5 – Контрольные образцы

	ца 5 – Контрольны	Насадочный	й вариант	Капиллярны	ый вариант
Детектор	Контрольная смесь	Концентрация вещества в контрольной смеси	Объем пробы	Концентрация вещества в контрольной смеси	Объем пробы
ДТП	Водород в азоте	от 0,6 % до 1,0 %	от 0,01 до 2 см ³	-	-
	Бензол в нонане	от 0,01 % до 1 %	от 0,0001 до 0,002 см ³	-	-
	Гептан в нонане	от $2,5\cdot 10^{-3}$ до $3,0\cdot 10^{-3}$ г/см ³	от 0,0001 до 0,002 см ³	-	-
	Азот в гелии	от 0,1 % до 0,5 %	от 0,01 до 2 см ³	-	-
	Пропан в гелии	от 0,1 % до 0,5 %	от 0,01 до 2 см ³	-	-
	Бензол в нонане	от $2,5\cdot 10^{-3}$ до $3,0\cdot 10^{-3}$ г/см ³	от 0,0001 до 0,002 см ³	от 2,5·10 ⁻³ до 3,0·10 ⁻³ г/см ³	от 0,0001 до 0,001 см ³
ПИД	Гептан в нонане	от $2,5\cdot 10^{-3}$ до $3,0\cdot 10^{-3}$ г/см ³	от 0,0001 до 0,002 см ³	от $2,5\cdot 10^{-3}$ до $3,0\cdot 10^{-3}$ г/см ³	от 0,0001 до 0,001 см ³
	Пропан в гелии	от 0,1 % до 0,5 %	от 0,01 до 2 см ³	от 0,1 до 0,5 %	от 0,01 до 2 см ³
папс	Сероводород в азоте	-	-	от 2 до 50 мг/м ³ (от 1,4·10 ⁻⁴ % до 3,5·10 ⁻³ %)	от 0,25 до 2 см ³
ПФД-S	Сероводород в метане	-	-	от 4 до 50 мг/м ³ (от 2,8·10 ⁻⁴ % до 3,5·10 ⁻³ %)	от 0,25 до 2 см ³
ТХД	Кислород в аргоне	от 0,01 % до 0,03 %	от 0,1 до 1 см ³	-	-
Э3Д	Трихлорэтилен в азоте	-	-	0,1 до 34 мг/м ³ (от 5,1·10 ⁻⁶ % до 5,1·10 ⁻¹ %)	от 0,01 до 2 см ³
OVII	Сероводород в азоте (воздухе, метане)	-	-	от 4 до 100 мг/м ³ (от 2,8·10 ⁻⁴ % до 7,0·10 ⁻³ %)	от 0,01 до 2 см ³
ЭХД	Этилмеркаптан в азоте (воздухе, метане)	-	-	от 4 до 50 мг/м ³ (от 1,55·10 ⁻⁴ % до 1,9·10 ⁻³ %)	от 0,01 до 2 см ³
рілп	Водород в гелии	от 0,0001 % до 0,005 % об.	от 0,01 до 2 см ³	от 0,0001 до 0,005 % об.	от 0,01 до 2 см ³
РИД	Кислород в гелии	от 0,0001 до 0,005 % об.	от 0,01 до 2 см ³	от 0,0001 до 0,005 % об.	от 0,01 до 2 см ³

•		Насадочный вариант		Капиллярнь	ый вариант
Детектор	Контрольная смесь	Концентрация вещества в контрольной смеси	Объем пробы	Концентрация вещества в контрольной смеси	Объем пробы
	Азот в гелии	от 0,0001 до 0,005 % об.	от 0,01 до 2 см ³	от 0,0001 до 0,005 % об.	от 0,01 до 2 см ³
	Метан в гелии	от 0,0001 до 0,005 % об.	от 0,01 до 2 см ³	от 0,0001 до 0,005 % об.	от 0,01 до 2 см ³
	Монооксид углерода в гелии	от 0,0001 до 0,005 % об.	от 0,01 до 2 см ³	от 0,0001 до 0,005 % об.	от 0,01 до 2 см ³

Для ПИД, ЭЗД, ПФД-S предел детектирования J_{min} , г/с, рассчитывают по формуле (3)

$$J_{min} = \frac{2 \cdot \Delta x \cdot m}{60 \cdot S_{\rm cp}} \tag{3}$$

Для ДТП, ТХД, ЭХД, РИД предел детектирования \mathcal{C}_{min} , г/см³ – по формуле (4)

$$C_{min} = \frac{2\Delta x \cdot m}{S_{\rm cp} \cdot V_{\rm PH}} \tag{4}$$

где Δx — максимальное значение амплитуды повторяющихся колебаний нулевого сигнала в милливольтах (мВ) с полупериодом (длительностью импульса), не превышающим 10 с, рассчитанное ПО «Хромос» в разделе «Поверка»;

m – масса контрольного вещества, Γ ;

 $S_{\rm cp}$ – среднее арифметическое значение площадей пика контрольного вещества, мВ·мин;

 $V_{\text{гн}}$ – расход газа-носителя, см 3 /мин

60 - коэффициент пересчета времени, с/мин

Массу контрольного вещества (m, Γ) при использовании раствора определяют по формуле (5)

$$m = V \cdot C \cdot K \tag{5}$$

где V – объем раствора, см³;

С – концентрация контрольного вещества, г/см³;

К – коэффициент, учитывающий содержание фосфора и серы в метафосе (паратион-метиле), равный 0,12 или углерода в н-гептане, равный 0,84.

В остальных случаях коэффициент принимают равным единице.

При использовании газовой пробы массу контрольного вещества $(m, \ \Gamma)$ определяют по формуле (6)

$$m = \frac{V_{\mathcal{A}} \cdot C \cdot M \cdot 0,01 \cdot P \cdot 10^{-3} \cdot K}{R \cdot (T_{KP} + 273)}$$
(6)

где Vд – объем дозы крана, см 3 ;

С –объемная доля контрольного вещества в газовой смеси, % об.;

P - давление в дозе, мм.рт.ст;

R – газовая постоянная R = 62,364 мм.рт.ст ·дм³/(моль·К);

 10^{-3} – коэффициент пересчета объема дозы Vд (см³) = Vд(дм³)· 10^{-3} ;

T – температура крана (дозы), °С;

M – молярная масса контрольного вещества (для справки: M _{пропана} = 44 г/моль, $M_{\rm водорода} = 2 \, \Gamma/{\rm моль}; \, M_{\rm сероводорода} = 34 \, \Gamma/{\rm моль}; \, M_{\rm кислорода} = 32 \, \Gamma/{\rm моль}; \, M_{\rm азота} = 28 \, \Gamma/{\rm моль};$ $M_{\text{метана}} = 16 \text{ г/моль}; M_{\text{монооксида углерода}} = 28 \text{ г/моль};$

К – коэффициент, учитывающий содержание углерода в пропане равный 0,82. Для остальных контрольных веществ K = 1.

Если в паспорте на ПГС указана концентрация компонента в мг/м³ или в долях на миллион по объему (ррт, млн-1), необходимо пересчитать концентрации в % об. по формулам (7) или (8) соответственно

$$C_{\text{\%of}} = \frac{C_{\text{K}}}{p_{\text{K}}} \cdot 100\%(7)$$

$$C_{\text{\%o6}} = C_{ppm} \cdot 10^{-4}$$
 (8)

где C_{κ} – концентрация компонента в ПГС, мг/м³;

 $p_{\rm K}$ – плотность компонента, мг/м 3 ;

 C_{nnm} – концентрация компонента в ppm (млн⁻¹).

При определении предела детектирования с помощью ПО «Хромос», раздел «Поверка» указанные выше пересчеты проводятся автоматически

Масса вещества, попадающего в детектор в режиме со сбросом пробы m_{π} рассчитывается по формуле (9)

$$m_{\rm A} = \frac{m_u}{\kappa} \tag{9}$$

где m_u – масса контрольного компонента, вводимого в испаритель;

K – коэффициент деления пробы.

Коэффициент K рассчитывается по формуле (10)

$$K = 1 + \frac{Q_{c6}}{Q_{K}}$$
 (10)

где $Q_{\rm K}$ — расход газа-носителя через капиллярную колонку, см 3 /мин; $Q_{\rm CG}$ — расход газа-носителя по линии сброса пробы, см 3 /мин.

10.3. Определение относительного среднего квадратического отклонения выходного сигнала Относительное среднее квадратическое отклонение (ОСКО) выходного сигнала определяют при условиях, указанных в таблицах 4 и 5, одновременно допускается выполнять определение предела детектирования. Допускается, согласно ГОСТ 26703-93 раздела 2 п.2.2., примечания 3, при регистрации сигнала в цифровой форме не определять ОСКО высоты измеренного сигнала.

Относительное среднее квадратическое отклонение (ОСКО) выходного сигнала определяют для следующих информативных параметров выходного сигнала: времени удерживания Туд и площади пика S пика.

В хроматограф вводят пробу не менее 5 раз (по ГОСТ 8.485-2013 от 5 до 10 раз). Определяют значения выходного сигнала (t_i, S_i) , находят их средние арифметические значения (t_{cp}, S_{cp}) .

Значения относительного среднего квадратического отклонения (ОСКО, %) G_t , G_s определяют по формулам (11) и (12)

$$G_t = \frac{100}{t_{\rm cp}} \cdot \sqrt{\frac{\sum_{i=1}^{n} (t_i - t_{\rm cp})^2}{n-1}}$$
 (11)

$$G_{S} = \frac{100}{s_{cp}} \cdot \sqrt{\frac{\sum_{i=1}^{n} (s_{i} - s_{cp})^{2}}{n-1}}$$
 (12)

где n – число результатов измерений, полученное после исключения выбросов (по ГОСТ Р ИСО 5725-2).

10.4 Определение изменения выходного сигнала за 48ч непрерывной работы хроматографа Относительное изменение параметров выходного сигнала за 48 часов непрерывной работы определяют следующим образом.

Проводят операции по п. 10.3 и определяют средние арифметические значения информативных параметров выходного сигнала — X_{cp} (t_{cp} , S_{cp}). Через 48 часов непрерывной работы снова проводят операции по п. 10.3, и определяют средние арифметические значения информативных параметров выходного сигнала — X_{cpt} (t_{cpt} , S_{cpt}).

Относительное изменение параметров выходного сигнала δ_t , % за 48 часов определяют по формуле:

$$\delta t = \frac{(X_{cpt} - X_{cp}) \cdot 100}{X_{cp}} \tag{13}$$

10.5 При проведении периодической поверки хроматографов, эксплуатируемых по НД на методики измерений, отвечающим требованиям ГОСТ Р 8.563–2009, проверяют только показатели точности результатов измерений в соответствии с нормативами контроля, установленными в НД на методики измерений.

10.6 Подтверждение соответствия средства измерений метрологическим требованиям 10.6.1. Уровень флуктуационных шумов и дрейфа нулевого сигнала детекторов не должны превышать значений, указанных в таблице 6.

Таблица 6 – Уровень флуктуационных шумов и дрейфа нулевого сигнала детекторов

<u> </u>		73 1
Детектор	Уровень шума	Уровень дрейфа
пид	2,0·10 ⁻¹⁴ A	5,0·10 ⁻¹² А/ч
ДТП	1,6⋅10 ⁻⁷ B	1,0·10 ⁻⁴ В/ч
ПФД-S	5,0·10 ⁻¹² A	1,0·10 ⁻¹⁰ А/ч
ТХД	1,0·10 ⁻⁵ B	1,0·10 ⁻⁴ В/ч
эзд	1⋅10 ⁻¹³ A	1·10 ⁻¹² А/ч
ЭХД	1·10 ⁻⁶ B	1,4·10 ⁻⁵ В/ч
РИД	1,0·10 ⁻⁴ B	1,0·10-2 В/ч

10.6.2. Полученные значения предела детектирования не должны превышать значений, указанных в таблице 7.

Таблица 7 – Пределы детектирования детекторов

Детектор		Значение предела
		детектирования
ПИД, по гептану (бензолу) или пропану, гС/с		$4,0\cdot 10^{-12}$
ДТП, гептану, пропану, азоту, водороду г/см ³		3,0·10 ⁻⁹
ПФД-S, по сере в сероводороде, г/с		$4,0\cdot 10^{-12}$
$TXД$, по кислороду, r/cm^3		$1,5 \cdot 10^{-10}$
ЭЗД по трихлорэтилену в азоте, г/с		$2,0\cdot10^{-13}$
ЭХД, по сероводороду, г/см ³		$1,0\cdot 10^{-11}$
ЭХД, по этилмеркаптану, г/см ³		3,0·10 ⁻¹¹
- РИД, по водороду, метану, г/см ³		$2,0\cdot 10^{-12}$
- РИД, по кислороду, азоту, оксиду углерода, г/см ³		$9,0\cdot 10^{-12}$

10.6.3. Значения ОСКО выходного сигнала не должны превышать значений, указанных в таблице 8, 9.

Таблица 8 – Предел допускаемого значения относительного среднего квадратического отклонения (ОСКО) выходного сигнала (площади, времени удерживания) в изотермическом

режиме

Детектор	ОСКО по времени удерживания, %	ОСКО по площади, %		
		Дозирование газа	Дозирование жидкости	
			Насадочная	Капиллярная
			колонка	колонка
пид	1	1	2	4
ДТП	1	1	2	-
ПФД-S	1	3	-	-
ТХД	1	2	1	-
ЭЗД	2	2	1	-
ЭХД	1	2	-	-
РИД	1	2	-	_

Таблица 9 – Пределы допускаемого значения относительного изменения выходного сигнала

(площадей) от первоначального значения за 48 ч непрерывной работы

Детектор	ОСКО по площади, %
ПИД, ДТП	±5
ПФД-Ѕ, ТХД	±10
ЭЗД, ЭХД	<u>±</u> 4
РИД	±6

11 Оформление результатов поверки

- 11.1. Результаты поверки заносят в протокол.
- 11.2 Сведения о результатах поверки средств измерений в целях подтверждения поверки передаются в Федеральный информационный фонд по обеспечению единства измерений в соответствии с Порядком создания и ведения Федерального информационного фонда по обеспечению единства измерений, передачи сведений в него и внесения изменений в данные сведения, предоставления содержащихся в нем документов и сведений, утвержденным приказом Минпромторга России № 2906 от 28.08.2020. При проведении поверки отдельных измерительных каналов (детекторов) из состава средства измерений информация об объеме проведенной поверки передается в Федеральный информационный фонд по обеспечению единства измерений.
- 11.3 По заявлению владельца средств измерений или лица, представившего их на поверку, аккредитованное на поверку лицо, проводившее поверку, в случае положительных результатов поверки (подтверждено соответствие средств измерений метрологическим требованиям) выдает свидетельства о поверке, оформленные в соответствии с требованиями к содержанию свидетельства о поверке и (или) в руководстве по эксплуатации средств измерений вносит запись о проведенной поверке или в случае отрицательных результатов поверки (не подтверждено соответствие средств измерений метрологическим требованиям) выдает извещения о непригодности к применению средства измерений. В случае положительных результатов поверки в целях предотвращения доступа к узлам настройки (регулировки) средств измерений аккредитованное на поверку лицо, проводившее поверку, наносит мастичную пломбу с изображением знака поверки на специально оборудованных площадках на винтах крепления.

Инструкция по приготовлению контрольных растворов

Настоящая инструкция устанавливает методику приготовления контрольных растворов, предназначенных для определения метрологических характеристик хроматографа.

Диапазон содержания контрольного вещества — от $5 \cdot 10^{-5}$ до 10 мг/см³. Относительная погрешность значения массовой концентрации контрольного компонента не превышает 10 %.

Средства измерений, материалы и реактивы приведены в разделе 5.

А.1 Процедура приготовления растворов

А.1.1 Растворы массовой концентрацией от 1 до 10 мг/см³ приготавливают объемно-весовым методом. Массовую концентрацию контрольного вещества определяют по формуле:

$$C = \frac{m}{V}$$

где т – масса контрольного вещества, мг;

V – объем приготовленного раствора, см³.

- А.1.2 Исходные вещества, используемые для приготовления раствора, выдерживают не менее 2 ч в лабораторном помещении.
- A.1.3 Температура окружающей среды при приготовлении контрольных растворов не должна изменяться более чем на 4 $^{\circ}$ C.
- A.1.4 Определяют массу m_1 мерной колбы вместимостью $100~{\rm cm}^3$. Результат взвешивания записывают с точностью до первого десятичного знака.
- A.1.5~B мерную колбу вносят от 100~до~1000~мг контрольного вещества и вновь взвешивают колбу m_2 .
 - А.1.6 Вычисляют массу контрольного вещества m, мг, по формуле:

$$m = m_2 - m_1$$

- А.1.7 В колбу с контрольным веществом вводят от 20 до 25 см³ растворителя, перемешивают содержимое и доводят объем раствора до 100 см³. Тщательно перемешивают раствор.
 - А.1.8 Рассчитывают массовую концентрацию контрольного вещества А.1.1.
- А.1.9 Растворы с содержанием контрольного вещества от $5\cdot 10^{-5}$ до 1 мг/см³ приготавливают объемным методом путем последовательного разбавления более концентрированных растворов. Массовую концентрацию контрольного вещества C_n рассчитывают по формуле:

$$C_n = \frac{C_{n-1}V_{n-1}}{100}$$

где n – номер ступени разбавления исходного контрольного раствора концентрацией;

 V_{n-1} – аликвотная доля раствора с массовой концентрацией C_{n-1} , мг/см³.

- A.1.10 Перед каждым разбавлением рассчитывают значение аликвотной доли раствора V_{n-1} , исходя из заданного значения концентрации контрольного вещества C_n и концентрации разбавляемого раствора C_{n-1} .
- А.1.11 В мерную колбу вместимостью 100 см³ вносят аликвотную долю разбавляемого раствора, доводят объем приготавливаемого раствора до 100 см³ и тщательно перемешивают.
 - А.2 Хранение контрольных растворов

Контрольные растворы хранят в чистых сухих склянках с хорошо притертыми пробками вдали от источников огня и нагревательных приборов при температуре от 4 до 8 °C.

Срок хранения исходного раствора – от 3 до 5 сут, смеси меньших концентраций хранению не подлежат.